

Summer Holidays Homework Framework

SESSION: 2023-24

 $CLASS - 12^{th}$

Subject: English

Text Book: Flamingo, Vistas and BBC Compacta

Syllabus Covered upto MAY END

Book Flamingo

- Chapter No.1 Chapter Name- The Last Lesson
- Chapter No.- 2 Chapter Name-Lost Spring
- Poem 1 Poem Name- My Mother at Sixty-six
- Poem 3Poem Name Keeping Quiet
- Chapter No. 3 Chapter Name- Deep Water
- Chapter No. 4 Chapter Name- The Rattrap
 - Book Vistas
- \circ Chapter No. 1 Chapter Name The Third Level
- Chapter No. 4 Chapter Name- The Enemy

2. List of all new concepts taughtupto MAY END (Grammar Topics)

- o Chapter No. Chapter Name- Reading Comprehension
- Chapter No. Chapter Name- Notice Writing
- Chapter No. Chapter Name- Invitations and Replies
- Chapter No. Chapter Name- Formal Letters

3. Tools required for doing Homework:

- Reader Book
- o Notebook
- Scrap Book
- Resources as per activity

4. Date of Submission of Homework: 3nd July, 2023

Category 9-12

5. Instruction/Guidelines for Formative Assessment based Homework:

- Section-A-Reading and Vocabulary Homework
 - > Each student will read :

Fictional work: The Old Man and the Sea by Ernest Hemingway

Non-fiction: Restless Days, Sleepless Nights by RanjanaBharij

Write review of both the works separately using the following steps

> Note: - Do the following homework in scrap book

- ✓ Draw creative page as front page
- ✓ Identify and list the Main characters in the Book
- ✓ Write the summary of the story as follows :—
 - ✤ Beginning
 - ✤ Middle
 - ✤ End
- ✓ Write your favourite part of the story
- ✓ Mention anything you disliked about the book
- ✓ Book rating out of 5 and why
- \checkmark If you were the author how will you end the story
- 2. Read any English newspaper once in a week and find out 5 new words from it & frame a sentence from it and present them in the same scrap book

Vocabulary Homework

Make your own dictionary.(Each student will learn 3 new words daily with meanings and write the words in dictionary)

Total 45 words should be included in your dictionary

• Section-B- Speaking Homework

- 1. Students will practice on one of the given topics :-
- " The limit of my language is the limit of my world"
 OR
- > Poverty and mental health

OR

> Mother- daughter relationship

Students will prepare speaking activity video on any one of the above topics and share with English teachers on WhatsApp group

• Section-C-Creative Writing Homework

Creative Writing Homework

Travelogue writing: There are many tourist attractions. They are popular for many reasons. Some places are popular for their natural beauty whereas others are for their historical and religious importance. Write the names of the places that you would like to visit in our country naturally beautiful places, places of historical and religious importance. Have you ever visited such places on your holidays? Write down the places you have visited so far. Writedetailed description of a visited place in the form of a paragraph.

Character portrait/ sketch writing of yourfavourite character from the novel"The Guide" by R.K. Narayan on A4 size sheet.

> Review writing: On a movie "Three idiots"

- Section-D- Learning and Pre reading Homework
 - 1. **Pre- reading**: Poem No. -4 , A Thing of Beauty

Poem No.; -5, A Roadside Stand

Learning : Book Flamingo

- Chapter No. 1 Chapter Name- The Last Lesson
- Chapter No.- 2 Chapter Name- Lost Spring
- Poem 1 Poem Name- My Mother at Sixty-six
- Poem 3Poem Name Keeping Quiet
- Chapter No. 3 Chapter Name- Deep Water
- Chapter No. 4 Chapter Name- The Rattrap
- o Book Vistas
- Chapter No. 1 Chapter Name The Third Level
- Chapter No. 4 Chapter Name- The Enemy
- Section-E- Project work

1. Prepare a student portfolio and include the following details :-

- Personal details
- > What I understand by portfolio
- > My goals/ Aim in life for future
- > My achievements till now
- > The areas I need to work to achieve my goal

Following projects can be given for Grammar Topic covered in the month of April and May:-

2. 12 tenses formula with examples

OR

Verb project chart

OR

Parts of speech and application

3. Grammar flip book with all rules, tips and tricks on Clauses and Conditional sentences

OR

Draw your favorite fiction-character from the book 'Old man and the Sea' and describe it using 10 adjectives

Summer Holidays Homework

SESSION: 2023-24

CLASS – 12th

Text Book: S.L. Arora, NCERT

Subject: PHYSICS

1. Syllabus Covered upto MAY END

- Chapter No.- 01 Chapter Name- Electric charge and field
- Chapter No.- 02 Chapter Name-Electric potential and electric capacitance
- Chapter No.- 03 Chapter Name- Current and electricity
- Chapter No.- 04 Chapter Name- Magnetic effect of current

2. List of all new concepts taught upto MAY END

- Force between the charges and their field
- Concept of capacitance and electric potential
- o Polarization and dielectric
- o Concept of current, Potential difference and EMF

3. Formative Assessment based Homework:

- Section-A-Creative Project/ Working model/ Inquiry based project.
- Section-B-Diagram and Labeling assessment activity.
- Section-C-Experiment based activity.
- Section-D- Derivations.
- 4. Summative Assessment based Homework:
 - o Section-E- Chapter-wise Assignments

5. Tools required for doing Homework:

- NCERT Text Book, S.L. Arora book
- o Notebook

- Resources as per activity

• Combination of cells and resistance

• Magnetic fields of various caring figures

o Force on a Moving charge particles in

6. Instruction/Guidelines for Formative Assessment based Homework:

• Section-A-Creative Project/ Working model/ Inquiry based project.

Торіс	Roll No.
Make a working project of Periscope	1 to 10
Creating Electric Current with a Magnet	11 to 20
Make Earthquake Alarm Working Model	21 to 30
Solar panel	31 to 40

I. (Roll No. 1 to 10) Topic: Make a working project of Periscope

• Materials Required: Two congruent pieces of mirror, cardboard or a PVC pipe, cutter, tape or glue

Steps to prepare:

- ▶ Use cardboard to make three hollow cuboids and arrange them in the shape of a real periscope.
- \blacktriangleright Attach the mirror glasses to the opposite corners of the structure at an angle equal to 45°.
- ▶ Hold one end of the periscope on eye level and look at the distant objects easily.

II (Roll No. 11 to 20) Topic: Creating Electric Current with a Magnet

• Materials Required; Coil the large no of turns, 9V volt battery, key, Galvanomerter

• <u>Steps</u> to prepare:

- ▶ Wind coils using 32 gauge wire (200 turns and 400 turns). Pass a strong magnet through each of the coils.
- > Measure the amount of electricity generated by the magnet moving through the coils by using a galvanoscope.
- > Repeat the procedure by moving the magnets through the coils at different speeds to see the difference in the current generated.

III. Roll No.2 1 to 30) Topic: Make Earthquake Alarm Working Model

- Materials Required:- LED light (preferably red),1 kilo-ohm resistor, Wire, Buzzer, Copper • wire, Steel nut, 9v Battery, 9v Battery clip connector, On/Off switch. Cardboard
- Steps to prepare:
- > Take a 7cm long copper wire, fold it and twist it. When done, penetrate that through the

- A4 Sheets, Internet

magnetic field

perpendicular cardboard, like this.

- Take the steel nut, penetrate a copper wire through the nut and twist it. The nut would act as a pendulum in the model. Fix this steel nut in the model by taking the tail (copper wire tied to the steel nut) and putting it across the small square cardboard. After doing, fix the pendulum in its place using a glue gun. Make sure you penetrate the pendulum across the small knot using copper wire on the perpendicular cardboard piece. Fix this steel nut in the model
- Now, we need to work with the buzzer and the LED light. Firstly, take the 1-kilo ohm resistor and fix it at one end of the LED light. This can be done using a heating mechanism.
- Fix a battery to the battery connector. Using the glue gun, fix the on/off switch, the battery, buzzer and the LED light at the edge of the cardboard base to complete the model. Ensure the switch is kept on to make the model a functional earthquake alarm

IV. Roll No. 31 to 40) Topic: Solar panel

• <u>Materials Required;</u> ferric chloride solution, solder, solder iron, alcohol, and crystal silicon paste.

• <u>Steps to prepare:</u>

- > Apply crystal silicon paste over the printed circuit board and leave it to dry.
- Remove the extra paste from the printed circuit board.
- > Attach the connecting wires to form the positive and negative terminals of the solar panel.
- > Place the set-up in direct sunlight and connect a multimeter across the terminals.

o Section-B- Diagram and Labeling assessment activity.

- Draw well labeled diagrams of the following:
 - Equipotential surface due to 1) point charge 2) dipole 3) Line charge distribution
 - > Magnetic field due to current carrying wire
 - Magnetic field due current carrying solenoid
 - > Plots Graph electric field vs distance for point charge, line charge and dipole
 - Plots Graph of electric potential vs distance for point charge, line charge and conducting shell

• Section-C-Experiment based activity.

- > <u>Name of the Activity</u>: Bending Water Static Electricity Experiment
- Material Required: A sink , A comb or a balloon
- Procedure: We did this impressive science experiment in my fifth grade class, and I have remembered it all these years! This experiment can be done with a comb OR a balloon. Either one will work just fine. Turn on the faucet with a very small stream of water. The smaller, the better, but you do need the water to be running consistently and not just dripping. Then charge either the comb or the balloon by running it through your hair. Hold the comb or the balloon very close to the stream of water, but not touching it.
- > **Observations:**
- > <u>Conclusion:</u>
- > <u>Precautions:</u>

Section-D- Derivations

Learning Homework:

- Derivations
 - 1) Electric field due to dipole on its axial line and equatorial line
 - 2.) Electric field due to a Charged ring on its center and on a point on its axil line
 - 3.) Electric field due to a charged wire of infinite length using Gauss theorem
 - 4.) Electric field due to a conducting hollow shell using Gauss theorem
 - 5.) Combination of cells in series and parallel
 - 6.) Magnetic field due current carrying wire
 - 7.) Magnetic field due to current carrying circular coil on its axil line
 - 8.) Magnetic field due to a solenoid using Ampere circuital law
 - 9.) Derivation of radius, time period, frequency of a charged particle in magnetic field.
- Section-E-Revision assignment.

Revision Assignment - 1

Class: 12th

Subject: Physics Ch. No.: 1

Ch. Name: Electrostatic Charges & Fields

Find -

(i) Net flux through the cylinder

(ii) Charge enclosed by the cylinder.

- (b) An early model for an atom considered it to have a positively charged point nucleus of charge Ze, surrounded by a uniform density of negative charge upto a radius R. The atom as a whole is neutral. For this model, what is the electric field at a distance r form the nucleus?
- (c) (i) Is the force acting between two point charges q_1 and q_2 kept at some distance in air, attractive or repulsive when : (i) $q_1 q_2 > 0$ (ii) $q_1 q_2 < 0$
 - (ii) Write down the value of absolute permittivity of free space.
 - (ii) What is the relevance of large value of K (=81) for water?
- (d) (i) A charge q is placed at the centre of a cube of side l what is the electric flux passing through two opposite faces of the cube?
 - (ii) Two concentric spherical shells of radii R and 2 R are given charges Q_1 and Q_2 respectively. The surface charge densities of the outer surfaces are equal. Determine the ratio $Q_1 : Q_2$.

Q.7. Assertion and reason questions:

- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false
- Assertion : Electric dipole moment is a scalar. **i**) **Reason :** $\vec{p} = q(2a)$
- ii) Assertion : No two electric lines of force can intersect each other. **Reason :** Because they lie far apart.
- iii) Assertion : The value of electrostatic force constant depends on nature of medium separating the charges and also on the system of units.

Reason : In SI, $k = 9 \times 10^9$ Nm² C⁻². In CGS system k = 1.

Conceptual and Mental Ability Based Type Questions) **Q.8**. Answer the following questions

Q1. (a) A comb run through one's hair attracts small bits of paper. Why? What happens if the hair are wet or if it is a rainy day?

(b) Ordinary rubber is an insulator. But the special rubber tyres of aircrafts are made slightly conducting. Why is this necessary?

(c) Vehicles carrying inflammable materials usually have metallic ropes touching the ground during motion. Why?

(d) A bird perches on a bare high power line, and nothing happens to the bird. A man standing on the ground touches the same line and gets a fatal shock. Why?

- Q_2 . If two objects repel one another, you know both carry either positive charge or negative charge. How would you determine whether these charges are positive or negative?
- **Q3.** In coulomb's law in electrostatics valid in all situations?
- Q4. Fig. shows tracks of three charged particles in a uniform electrostatic field. Give the signs of the three charges. Which particle has the highest charge to mass ratio?

- (a) Suppose two particles have identical curved trajectories. Which of the following are necessarily true?
 - (i) they have same charge
- (ii) they have same mass
- (iii) the charges have the same sign, (iv) they have the same e/m ratio.
- (b) You are given the initial velocity \mathcal{P} of a beam particle and the length of the capacitor l. What other measurement would enable one to find e/m?
- Q5. Two charges of magnitude -2 Q and + Q are located at points (a,0) and (4a,0) respectively. What is the electric flux due to charges through a sphere of radius '3 a' with its centre at the origin.

Revision Assignment - 2

For recapitulation & solving the assignment the students should refer to their NCERT BOOK, MTG Part-1 (Case Study Question/Activity based Question)

Subject: Physics Ch. No.: 2

Ch. Name: Electric Potential And Capacitor

Instruction: Read the following passage and answer the question no. 1, 2,3,4 & 5. Case Study-1 A capacitor is an arrangement for storing a large amount of electric charge and hence electric energy in a small space. The capacitance of an isolated conductor is increased considerably by bringing near it an uncharged conductor connected to Earth. This is the principle of capacitor. Such an arrangement of the two conductors separated by a dielectric medium is said to form a capacitor or condenser depending on the shape of conductors, we get parallel plate capacitor, spherical capacitor and cylindrical capacitor. Capacity of a parallel plate capacitor is $C = A\varepsilon_0 d$, where A is the area of plates, and d is distance between the two plates of capacitor. 0.1 When a dielectric medium of relative permittivity K is inserted between the plates of capacitor than capacitance of the capacitor will (b) decreases (a) increases. (c) remains constant (d) zero. Q.2. When condensers are joined in parallel then C= (a) $C = C_1 + C_2$ (b) $C = C_1 - C_2$ (c) $C = C_1 \times C_2$ (d) $C=1/C_1.C_2$ When condensers are joined in series then C = Q.3. (a) $C_1 C_2/C_1+C_2$ (b) $C_1 + C_2 / C_1 \cdot C_2$ (c) $C_1 + C_2$ (d) none of above What happens to capacitance of the condenser when the distance between the plates increased Q.4. (c) becomes half (d) doubles (a) increases (b)decreases Q.5. The amount of energy stored between the plates of capacitor (a) $CV^2/2$ (c) $Q^2 V/2$ (b) QV/2 (d) C2V

Part-2

Subject Specific conceptual definitions & Application based Questions

Q.4. Define the following terms:-

i)Electrostaticsii)Electric Dipole moment.iii)Electric polarizationiv)Electric Capacitance.

Q.5. Differentiate the following:-

i) Coulomb Law & Gauss Law.

- ii) Electric field line & Equipotential surface.
- iii) Electric susceptibility & Polarization density.
- iv) Electric flux & Electrostatic shielding.

Q.6. Application based question:-

- a) What is the flux through a cube if a Charge Q placed at (i) center (ii) at corner (iii) at center of a face
- b) What is the capacitance of a parallel plate capacitor if a dielectric slab of dielectric constant 3 and thickness x (x<d) insert between the plate of capacitor oa area of plate A and distance between the plate is d

c) What is the work done to move a 2µC charge from point (5m,0) to point (0,3m) when a charge of 3µC placed at origin

Q.7. Assertion and reason questions:

- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false
- Assertion : A parallel plate capacitor is connected across battery through a key. A dielectric slab of dielectric constant K is introduced between the plates. The energy which is stored becomes K times.
 Reason : The surface density of charge on the plate remains constant or unchanged.
- ii) Assertion : Two concentric charged shells are given. The potential difference between the shells depends on charge of inner shell.

Reason : Potential due to charge of outer shell remains same at every point inside the sphere.

iii) Assertion : Electric field is discontinuous across the surface of a spherical charged shell.Reason : Electric potential is continuous across the surface of a spherical charged shell.

Q.8. Conceptual and Mental Ability Based Type Questions)

Answer the following questions in one word or a sentence.

- Q1. Define electric flux. Write its S.I. unit.
- Q^2 . Why are electric field lines perpendicular at a point on an equipotential surface of a conductor?
- Q3. A ball of mass 5 g and charge 10-7 C moves from point A, whose potential is 500 V, to point B, whose potential is zero. What is the velocity of the ball at point A if, at point B, it is 25 cm per second?
- Q4. What is Gauss the theorem? Write its mathematical form .
- Q5. Write the expression for energy loss when a charged capacitor C up to potential V connect with another uncharged identical capacitor in parallel
- Q6. Find the potential energy of a system of four particles placed at the vertices square of side 'a' .Also obtain the potential at the center of the square
- Q7A capacitor of capacitance $5.00 \ \mu\text{F}$ is charged to $24.0 \ \text{V}$ and another capacitor of capacitance $6.0 \ \mu\text{F}$ is charged to $12.0 \ \text{V}$. (a) Find the energy stored in each capacitor. (b) The positive plate of the first capacitor is now connected to the negative plate of the second and vice versa. Find the new charges on the capacitors. (c) Find the loss of electrostatic energy during the process. (d) Where does this energy go?

Revision Assignment - 3

Subject: Physics Ch. No.: 3

Ch. Name: Current and electricity

- Q3. Define the term current density of a metallic conductor. Deduce the relation connecting current density (J) and the conductivity (σ) of the conductor, when an electric field E, is applied to it
- Q4. State Kirchhoff s current law and voltage law

Q.7. Assertion and reason questions:

- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false
- **Q.1.** Assertion : In a simple battery circuit, the point of the lowest potential is positive terminal of the battery.

Reason : The current flows towards the point of the higher potential, as it does in such a circuit from the negative to the positive terminal..

- Q.2. Assertion : A larger dry cell has higher emf. Reason : The emf of a dry cell is proportional to its size.
- **Q.3.** Assertion : Voltmeter is connected in parallel with the circuit. **Reason :** Resistance of a voltmeter is very large.

Q.8. Conceptual and Mental Ability Based Type Questions)

Answer the following questions in one word or a sentence.

1. Two heated wires of the same dimensions are first connected in series and then it's parallel to a source

of supply. What will be the ratio of heat produced in the two cases?

- 2. The storage battery of a car has an emf of 12V If the internal resistance of the battery is 0.4Ω , what is the maximum current that can be drawn from the battery?
- 3. Potential difference Vis applied across the ends of copper wire of length 1 and diameter D. What is the effect on drift velocity of electrons if(a) V is doubled
- **4.** (a) Find the current flowing through each cell in the circuit shown in Fig. 3.181.

Also calculate the potential difference across the terminal of each cell.

(b) Find the equivalent resistance of the networks shown in Fig. 3.68 between the points A and B.

- 5. A storage battery of emf 8.0 V and internal resistance 0.5Ω is being charged by a 120 V dc supply using a series resistor of 15.5Ω . What is the terminal voltage of the battery during charging? What is the purpose of having a series resistor in the charging circuit?
- 6. A current of 2A flows through 2Ω resistor when connected across a battery. The same battery supplies a current of 0.5A when connected across a 9Ω resistor. The internal resistance of the battery is _____.
- 7. A cell of emf 'E' and internal resistance 'r' is connected across a variable load resistor R. Draw the plots of the terminal voltage V versus (i) R and (ii) the current i.
 It is found that when R = 40, the current is 14 when R is increased to 90, the current reduces to 0.5.

It is found that when $R = 4\Omega$, the current is 1A when R is increased to 9Ω , the current reduces to 0.5 A. Find the values of the emf E and internal resistance r

8. State Kirchhoff's rules. Use these rules to write the expressions for the currents I_1 , I_2 and I_3 in the circuit diagram shown.

Revision Assignment - 4

Subject: Physics Ch. No.: 4

Ch. Name: Magnetic Effect Of Current

conductor.

For recapitulation & solving the assignment the students should refer to their NCERT BOOK,MTG Part-1

(Case Study Question/Activity based Question) Instruction: Read the following passage and answer the question no. 1, 2 & 3.

Case Study-1

A galvanometer is a device used to detect current in an electric circuit. It cannot as such be used as an ammeter to measure current in a given circuit. This is because a galvanometer is a very sensitive device. It gives a full scale deflection for a current of the order of Moreover for measuring currents. The galvanometer has to be connected in series, and it has a large resistance this will change the value of current in the circuit. To overcome these difficulties. We connect a small resistance R called shunt resistance, in parallel with the galvanometer coil, so that most of the current passes through the shunt. Now to use galvanometer as a voltmeter, it must draw a very small current, otherwise it will appreciably change the voltage which we are measuring. To ensure this a large resistance R is connected in series with the galvanometer.

- Q.1. A sensitive galvanometer like a moving coil galvanometer can be converted into an ammeter or a voltmeter by connecting a proper resistance to it. Which of the following statements is true?
 - (a) a voltmeter is connected in parallel and current through it si negligible
 - (b) an ammeter is connected in parallel and potential difference across it is small
 - (c) a voltmeter is connected in series and potential difference across it is small
 - (d) an ammeter is connected in series in a circuit and the current through it is negligible.

Q.2. By mistake a voltmeter is connected in series and an ammeter is connected in parallel with a resistance in an electrical circuit. What will happen to the instruments?

- (a) Voltmeter is damaged. (b) Ammeter is damaged (c) Both are damage.
 - (d) None of damaged

Q.3. A galvanometer coil has a resistance of 15 Ohm and gives full scale deflection for a current of 4 ma. To convert it to an ammeter of range 0 to 6 A

- (a) 10 m ohm resistance is to be connected in parallel to the galvanometer.
- (b) 10 m Ohm resistance is to be connected in series with the galvanometer.
- (c) 0.1 Ohm resistance is to be connected in parallel to the galvanometer.
- (d) 0.1 Ohm resistance is to be connected in series with the galvanometer

Q.4 Two identical galvanometers are converted into an ammeter and a milliammeter. Resistance of the shunt of milliammeter through which the current passes through will be (a) more (b) equal (c) less (d) zero

(v) A voltmeter has resistance of G ohm and range of V volt. The value of resistance used in series to convert it into a voltmeter of range **nV** volt is

	Part-2		
	Subject Specific conceptual de	finitions & Applica	tion based Questions
Q.4.	Define the following terms:-		
	i) Galvanometer ii) Ammeter	iii) Voltmeter	iv) List Count
Q.5.	Differentiate the following:-		
	i) Voltage and ammeter	ii)Ammeter and	Galvanometer
	iii) Biot Savart law and Coulomb's law	iv) Gauss law and	Ampere circuital law
Q.6.	5. Application based question:-		
	i. Explain Biot-savarts law in term of		
	(i) Current density		
	(ii) Charge and its velocity.		
	ii. State Ampere's circuital law and prove	e this law for a circu	lar path around a long current carrying

iii. Find the condition under which the charged particles moving with different speeds in the presence of electric and magnetic field vectors can be used to select charged particles of a particular speed.

Q.7. Assertion and reason questions:

- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false
- i. Assertion (A): On changing the direction of flow of current through a straight .conductor, the direction of a magnetic field around the conductor is reversed.

Reason (**R**): The direction of magnetic field around a conductor can be given in accordance with left hand thumb rule.

- ii. Assertion (A): The magnitude of the magnetic field at a point on the axis of a current carrying solenoid is inversely proportional to the current flowing through the solenoid. Reason (R) : The magnitude of the magnetic field at a point on the axis of a current carrying solenoid is directly proportional to the number of turns per unit length of a solenoid.
- iii. Assertion (A): A compass needle is placed near a current carrying wire. The deflection of the compass needle decreases when the magnitude of an electric current in the wire is increased. Reason (R) : Strength of a magnetic field at a point near the conductor increases on increasing the current.

Q.8. Conceptual and Mental Ability Based Type Questions)

Answer the following questions in one word or a sentence.

- 1 Proton and a alpha particle enters in a magnetic field with same kinetic energy perpendicular to magnetic field. Find the ratio of there radius .
- 2. What is the S.I unit and dimensional formula of magnetic permeability.
- 3. In a current-carrying coil of radius R and having N turns is opened and made into a straight long wire. Then the magnetic field at a distance R would be how many times of the value of the centre of the coil?
- 4. Find the relation between the magnetic field at R/2 on-axis, and magnetic field at the centre of the coil. Here R is the radius of the coil.
- 5. Find the force per unit length on two parallel current-carrying conductors.
- 6. Find the expression for the resistance connected in parallel to convert a galvanometer to an ammeter.
- 7. Two circular coil of radius in ratio 2: 3 placed perpendicular to each other at a common center. If current in both coil is same the fine the
 - A. Ratio of magnetic field at center
 - **B.** Total magnetic field at center
 - C. Ratio of magnetic moment
- 8. Rang of a galvanometer is 0.5 A and resistance is 10 Ω . What is the value of shunt connected with galvanometer to convert it into a ammeter of range 6A?
- 9. A current carrying coil of radius R and numbers of terns N convert into a square. Find the ratio of their magnetic moment.

(Section-B) Lab Manual work

Links from You Tube:

Experiment-1 https://youtu.be/R j0cFkzDIY

Experiment-2.<u>https://youtu.be/JTvzP7HrMxU</u>

Experiment-3 https://youtu.be/7gllLt-BOL8

Experiment-4.https://youtu.be/3jIWlX4dmlI

Experiment-1. To determine resistivity of two / three wires by plotting a graph for potential difference versus current.

Experiment-2. To find resistance of a given wire / standard resistor using metre bridge.

Experiment-3. To determine resistance of a galvanometer by half-deflection method and to find its figure of merit.

Experiment-4. To convert the given galvanometer (of known resistance and figure of merit) into a voltmeter of desired range and to verify the same.

(Do this work in Practical file)

NOTE: Holiday Homework will not be accepted after the assigned date.

R.E.D. GROUP OF SCHOOLS SUMMER HOLIDAYS HOMEWORK (SESSION: 2023-24)

$CLASS - 12^{th}$

Subject: Chemistry Text Book: NCERT book

1. <u>Syllabus Covered up to MAY END</u>

- Chapter No.2 Chapter Name- Solutions
- Chapter No.3 Chapter Name- Electrochemistry.
- Chapter No.4 Chapter Name- Chemical kinetics
- Chapter No.10 Chapter Name Haloalkanes and Haloarenes
- Chapter No. 8 Chapter name: D and f block elements

2. List of all new concepts taughtup to MAY END

- Colligative properties
- Concentration Terms
- Abnormal molar mass
- Electrolysis and its product
- Electrochemical cell
- Nernst equation
- ➢ Fuel cell
- Primary and secondary cell
- Preparation of Haloalkanes and Haloarenes
- > De-Hydro-halogenation reaction along with Zaitsev rule
- Nucleophilic substitution reaction and mechanism
- Physical properties of transition elements
- Transition elements
- 3. Formative Assessment based Homework:
 - Section-A-Creative Project/ Working model/ Inquiry based project.
 - Section-B-Diagram and Labeling assessment activity.
 - Section-C-Experiment based activity.
 - Section-D- Learning and Pre-reading homework.

4. <u>Summative Assessment based Homework:</u>

Section-E - ChapterwiseRevisionassignment (Written, Learning & Pre-reading Homework)

5. <u>Tools required for doing Homework:</u>

- 1. NCERTBook, Pradeep book
- 2. Notebook
- 3. A₄Sheets
- 4. Resources as per activity

6. Instruction/Guidelines for Formative Assessment based Homework:

Sr.No.	Торіс	Roll No.
1	Elevation of boiling point and depression in freezing point	1 to 10
2	A Hydrogen oxygen fuel cell	11 to 20
3	Various factors affecting rate of reaction	21 to 30
4	Nucleophilic substitution reaction of Haloalkanes and Mechanism	31 to last roll no.

Section-A-Creative Project/ Working model/ Inquiry based project.

1.	To stud	y the elevation of boiling point and depression in freezing point also include examples from			
	real life	(Roll no. 1 to 10)			
	Materia	l required: - A4 sheets, A Ruler, NCERT Book, A Tape and a box.			
	Steps to prepare - understand the concept and explain on A4 sheets.				
2.	2. To build a hydrogen oxygen fuel cell (Roll no 11 to 20)				
	Materia	al required: - A4 sheets, A Ruler, NCERT Book, A Tape and a box.			
Such study various factors affecting rate of reaction (Poll no 21 to 20)					
3.	10 Stud Materia	y various factors affecting rate of reaction (Kon no 21 to 50)			
	Steps to	prepare - understand the concept and explain on A4 sheets			
4.	To stud	y about nucleophilic substitution reaction of Haloalkanes and mechanism (Roll no.31 to last			
	roll no.)				
	Materia	l required: -A4 sheets, A Ruler, NCERTBook, A Tape and a box			
	Steps to	prepare - understand the concept and explain on A4 sheets.			
Sectio	on-B-	Diagram and Labeling assessment activity.			
	Draw y	well labelled diagrams of the following:			
	• Dra	aw a diagram of electrochemical cell of Cu and Ag			
~ .	• Dra	w the graphs of zero first and second order reaction			
Sectio	on C	Experiment based activity			
Name	of the A	Activity: To observe how eggshell is protected by tooth paste and learn how toothreacts			
		to acids and stain			
Mater	ial Requ	uired: egg, toothpaste, coca cola and vinegar.			
Procee	dure:	Take four eggs and wash it carefully coat two plain eggs with good amount of toothpaste			
		evenly. And the rest two eggs remain as it is. That means we are not coating these eggs			
		with any other material.			
		Pick one plain egg and one toothpaste coated egg and drop them in coke filled glasses			
		respectively and wait for 24 hours to see the outcomes.			
Obser	vations	Egg shell is the rich source of calcium carbonate whereas Coca-Cola is acidic in nature. When			
		the plain egg dropped in the coke, the acidic contents immediately start reacting with calcium			
		carbonate and forms stains			
		On the other hand, the eggs coated with toothpaste, when dropped in the coke and the fluoride			
		in toothpaste build a protective layer between the eggshells and acidic			
Conclu	usion:	Fluoride in toothpaste makes the eggshell stronger and protects it from reacting to acidic			
		contents of coke.			
Precau	itions:	Wash the egg carefully so that it does not break.			
<u>Sectio</u>	on-D-L	earning and Pre-reading homework.			
Learn	ing Hor	nework: Revise All N. C. E. R. T questions			
Pre-Re	eading l	Homework: Read Ch.9 coordination compounds			

Section-E- Revision assignment.

Revision Assignment – 1

CLASS: 12th

Chapter Name: Solutions

Subject: Chemistry

Chapter No.: 2

Part-1

(Case Study Question/Activity based Question)

Instruction: Read the following passage and answer the question

Q.1 Case Study-1

The boiling point elevation and the freezing point depression of solutions have a number of practical applications. Ethylene glycol (CH₂OH.CH₂OH) is used in automobile radiators as an antifreeze because it lowers the freezing point of the coolant. The same substance also helps to prevent the radiator coolant from boiling away by elevating the boiling point. Ethylene glycol has a low vapour pressure. We can also use glycerol as an antifreeze. In order for boiling point elevation to occur, the solute must be non-volatile, but no such restriction applies to freezing point depression. For example, methanol (CH₃OH), a fairly volatile liquid that boils only at 65°C is sometimes used as antifreeze in automobile radiators.

Answer the following questions given below: -

- (i) Out of the CH_3OH and $C_6H_{12}O_6$, which is a better reagent for depression in freezing point but not for elevation in boiling point?
- (ii) Will the depression in freezing point be same or different, if 0.1 moles of sugar or 0.1 moles of glucose is dissolved in 1 L of water?
- (iii) 124 g each of the two reagents glycerol and glycol are added in 5 kg water of the radiators in the two cars. Which one is better for a car? Justify your answer.

OR

If the cost of glycerol, glycol and methanol are the same, then what would be the sequence of the economy to use these compounds as antifreeze?

Part-2

(Subject Specific conceptual definitions & Application based Questions)

Q 2. Define the following terms:

i) Henry law ii) Osmosis iii) Colligative property iv) Van't Hoff factor

Q 3. Differentiate the following:

- i) Ideal and non-ideal solution ii) Positive and negative deviation
- iii) Minimum and maximum. Boiling azeotrope iv) Molarity and molality
- **Q 4.** Application based question:

- Calculate the osmotic pressure in Pascal's exerted by a solution prepared by dissolving 1.0 g of polymer of mass 185,000 in 450 mL of water at 37°C.
- ii) 19.5 g of CH₂FCOOH is dissolved in 500 g of water. The depression in the freezing point of waterobserved is 1.0°C. Calculate the Van't Hoff factor and dissociation constant of fluoroacetic acid.
- iii) What concentration of nitrogen should be present in a glass of water at room temperature? Assume a temperature of 25°C, a total pressure of 1 atmosphere and mole fraction of nitrogen in air of 0.78. (K_H for nitrogen = 8.42×10^{-17} M/mm Hg).
- iv) What happen when cell is placed in
 - a) 0.5% NaCl solution b) 1.5% NaCl solution

Q 5. Assertion and reason questions:

i) Assertion: The molarity of a solution in liquid state changes with temperature.

Reason: The volume of a solution changes with a change in temperature.

- (a) Both Assertion and reason are true and reason is correct explanation of assertion.
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false.
- ii) Assertion: When NaCl is added to water a depression in the freezing point is observed.

Reason: The lowering of the vapour pressure of a solution causes depression at the freezingpoint.

- (a) Both Assertion and reason are true and reason is correct explanation of assertion.
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false.

Q 6. What is van't Hoff factor for NaCl, Aluminum chloride?

- **Q 7.** What is Anoxia?
- Q 8. Why aquatic organism feelsmore comfortable in cold water?

Revision Assignment –2

Chapter Name: Electrochemistry					Chapter No 3		
					Part-1		
			(Case S	tudy Questio	n/Activity ba	sed Question)	
Instr	uction:	Read th	he following pas	sage and ans	wer the quest	tion	
Q.1	Case	Study-	1				
	All	chemica	l reactions inv	volve interact	tion of atom	ns and molec	ules. A large number of
	atom	s/molect	iles are present	in a few	gram of any	chemical cor	npound varying with their
atomic/molecular masses. To handle such large number conveniently, the m				tly, the mole concept was			
	intro	duced. A	All electrochemic	al cell reaction	ons are also t	based on mole	concept. For example, a 4.0
	mola	r aqueou	s solution of Na	Cl is prepared	and 500 mL	of this solution	is electrolysed. This leads to
	the ev	volution	of chlorine gas a	t one of the el	ectrode. The a	amount of produ	icts formed can be calculated
	by us	ing mole	e concept.			I I I I	
	The	followin	g questions are i	multiple choi	ce questions.	Choose the mo	st appropriate answer:
	(i)	The to	tal number of mo	oles of chlorin	e gas evolved	l is	
		(a) 0.5	5 ((b) 1.0	(c) 1.	5	(d) 1.9
	(ii)	If cath	ode is a Hg electro	ode, then the ma	aximum weight	of amalgam forr	ned from this solution is
		(a) 30	0g ((b) 446 g	(c) 39	96 g	(d) 256 g
	(iii)	The to	otal charge (could	omb) required	for complete	electrolysis is	(1) 102000
		(a) 18	6000	(b) 24125	(c) 48	8296	(d) 193000
	(iv)	In the	electrolytes the	number of mo	UK Des of electro	ns involved are	
	(\mathbf{IV})	(a) 2	ciccuorytes, the	(b) 1	(c) 3	iis involved are	(d) 4
		(4) =		(0) 1	Part-2		
		(Sul	oject Specific co	nceptual defi	nitions & Ap	plication based	l Questions)
O 2.	Defir	ie the fo	llowing terms:	•		•	
C	(a) E	lectrolyti	ic cell	(b) Mo	olar conductiv	ity	(c) Kohlrausch law
	(d) F	uel cells		(e) Far	aday laws	5	
O 3.	Diffe	rentiate	the following:		5		
	(a)	Galva	nic and Electroly	tic cell	(b)	Primary and	secondary cell
04.	Appl	ication	based question:			j	,
	a)	The m	molar conductivity of a 1.5 M solution of an electrolyte is found to be 138.9 S cm ² mol ⁻¹ .				
	,	Calcu	late the conductiv	, vity of this sol	ution	5	
	b)	The c	onductivity of 0.	001 M acetic	acid is 4×10^{10}	0 ⁻⁵ S/cm. Calcu	late the dissociation constant
	- /	of ace	tic acid. if molar	conductivity	at infinite dilu	tion for acetic a	cid is 390 S cm ² /mol.
	c)	Calcu	late the time to	deposit 1.27 s	g of copper at	t cathode when	a current of 2A was passed
		throug	where the solution of	CuSO ₄ .			I I I I I I I I I I I I I I I I I I I
0.5.	Asse	rtion an	d reason questio	ons:			
2	Choo	ose the c	orrect one from	. Following o	ption		
	(a)	Both A	Assertion and rea	son are true a	nd reason is co	orrect explanati	on of assertion.
	(b)	Both A	Assertion and rea	son are true b	ut reason is no	ot a correct expl	anation of assertion.
	(c)	If asse	ertion is true but i	reason is false	•		
	(d)	If both	n assertion and re	eason are false			
	Asse	rtion:	On dilution pur	r all electrolyt	es decreases o	on dilution.	
	A SCAL	rtion.	Am for weak	electrolytes s	hows a sharp	increase when	the electrolytic solution is
	1 1000		diluted.	01001101y105 5	nows a sharp		i die electrotytic solution is
	Reas	on:	For weak electr	olytes degree	of dissociatio	n increases with	n dilution of solution.

CLASS: 12th

Subject: Chemistry

Revision Assignment –3

Chapter Name: Chemical Kinetics				anject. Chemistry anter No - 4
Chap		Part-1		
		(Case Study Ouestion/Act	vity based Question)	
Instru	ction: Read	the following passage and answer th	e question	
0.1	Case Study	- 1	1	
C -	The half-life i.e., $[A]_t = [$ concentratio kinetics. It is finite time, infinite time The followi O1.For the	e of a reaction is the time required for $[A]/2$. For first order reaction, $t_{1/2} = 0$ on. Figure shows that typical variation may be noted that though the major p but the reaction will never cease as e. ng questions are multiple choice que half-life period of a first order rest	or the concentration of react $0.693/k$ this means $t_{1/2}$ if a of concentration of react portion of the first order k the concentration of react estion. Choose the most ap action. which one of the	tant to decrease by half, s independent of initial ant exhibiting first order inetics may be over in a ant will be zero only at propriate answer: following statements is
	generally fa	alse?	,	8
	(a) it is inde	pendent of initial concentration	(b)It is independent of ter	mperature.
	(c) it decreas	ses with the introduction of a catalyst.	(d) None of these.	-
	Q2.The rate	e constant for a first order reaction	is 7.0 x 10 ⁻⁴ s ⁻¹ . If initial co	ncentration of reactant
	is 0.080 M,	what is the half-life of reaction?		
	(a) 990 s	(b) 79.2 s	(c)12375 s	(d) 10.10 x 10 ⁻⁴ s
	Q3. A react	tion's rate constant is k= 3.28×10^{-4} s	⁻¹ . Determine the reaction	's order.
	(a) First orde	er (b) Second order	(c) Third order	(d) Fourth order
Q.2	Define the f	following terms: -		
-	a) Activation	n Energy	c) Pseudo first order reac	tion
	b) Half-life		d) Rate constant	
Q3	Differentiat	te the following:		
	a) Order and	d Molecularity	b) zero and first order rea	action
Q.4	Application	based question: -		
	a) Expl	an effect of temperature and catalyst	on rate of reaction with graj	phs
	b) A II	rst-order reaction is 50 percent com	plete in 30 minutes. Calc	ulate the time taken for
	com]	pretion of 87.5 percent of the reaction.	$\mathbf{v} = \mathbf{v}$	V V V shance if the
	C) HOW	entration of the substance X is doubled	d and that of V is halved?	$\rightarrow \Lambda_2$ i change if the
05	Assertion a	nd reason questions.		
Q.J	Choose the	correct one from Following ontion		
	(a)If both A	ssertion and Reason are correct and	l Reason is correct explan	ation of Assertion.
	(b)If both A	Assertion and Reason are correct but	t R is not the explanation	of Assertion.
	(c)If Assert	ion is correct Reason is wrong.	F	
	(d)If Assert	tion is wrong Reason is correct.		
1.	Assertion:	Precipitation of silver chloride oc	curs instantaneously by mi	xingaqueous solution of
		silver nitrate and sodium chloride.		
	Reason:	Ionic reactions occur very fast		
2.	Assertion:	Order and molecularity are same.		
	Reason:	Order is determined experimentall	y and molecularity is the s	sum of thestoichiometric
		coefficient of rate determining elem	nentary step.	

CLASS: 12th

Subject: Chemistry

Revision Assignment –4

CLA	SS: 12 th	1				Subject: Chemistry
Chap	ter Nai	me- Hal	oalkanes	and Haloarenes		Chapter No 10
Part	1 Case	based q	uestion			
	Nucle	eophilic	substitutio	on reactions are of two	types; substitution nucleo	philic bimolecular $(S_N 2)$ and
	substi	itution n	ucleophili	c unimolecular (S _N 1)	depending on molecules ta	aking part in determining the
	rate o	of reaction	n. Reactiv	vity of alkyl halide tow	vards S _N 1 and S _N 2 reaction	ns depends on various factors
	such	as steric	e hindrand	e, stability of interme	ediate or transition state	and polarity of solvent. $S_N 2$
	reacti	on mech	nanism is	favoured mostly by p	rimary alkyl halide or tra	ansition state and polarity of
	solver	nt, S _N 2 r	reaction m	echanism is favoured i	nostly by primary alkyl ha	alide then secondary and then
	tertiar	ry. This o	order is re	versed in case of S _N 1 r	eactions.	-
	Answ	· ver the f	ollowing	questions given below	:	
	(i)	Which	n of the fo	llowing is most reacti	ve towards nucleophilic s	substitution reaction?
	(-)	(a)C ₆ F	4.C1	(b)CH ₂ =CHCl (c	$c)ClCH_2CH=CH_2$ (d) C	H₃CH=CHCl
	(ii)	Isonro	nvl chlor	ide undergoes hydrol	vsis hv	
	(11)	$(a)S_{N1}$	mechanis	sm	$(b)S_{N}2$ mechanism	
		$(c)S_{N}1$	and Sy2	mechanism	(d)neither Syl nor S	v2 mechanism
	(iii)		nost react	ive nucleonhile among	the following is	N2 meenamism
	(111)		105116act	(b)C.H.O	(c)(CH ₂)-CHO ⁻	$(d)(CH_{2})_{2}CO^{2}$
02	Dofin	(a)CII	llowing	$(0)C_{6}I15O$	(C)(CI13)2CIIO	(u)(CII3)3CO
Q2		mbidant	nualaanh	ile		
	$\begin{array}{c} a \\ b \\ \end{array}$		ation			
	(0) (0)	uitz iea	citon	n		
02	С) ГІ D:ff					
QS		rentiate	the follow	ving		
04			SINZ Mech			
Q4	Appu			suon: -		
	a)	HOW V	VIII YOU DI	ing about the following	g conversions?	
		l. 	Ethane to	b bromo-etnene		
	1 \	II.	But-I-en	e to but-2-ene		
	6)	A hyd	lrocarbon	C_5H_{10} does not react	with chlorine in dark bu	t gives a single monochloro
	,	compo	bund C_5H_9	CI in bright sunlight. Ic	dentify the hydrocarbon.	
	c)	Predic	t all the a	lkenes that would be for	ormed by dehydrohalogen	ation of the following halides
		with so	odium eth	oxide in ethanol and id	entify the major alkene:	
		III.	I-Bromo	-1-methylcyclohexane		
	•	iv.	2-Chlord	-2-methylbutane		
	d)	Out of	$C_6H_5CH_2$	CI and $C_6H_5CHClC_6H$	5, which is more easily hyc	irolysed by aqueous KOH.
	e)	p-aicn	lorobenze	ne nas nigner m.p. a	ind lesser solubility than	those of o-and m-isomers.
05	Asser	tion and	os. d reason (mestions		
Q5	Choo	se the co	orrect on	e from. Following opti	ion	
	(a)	If bot	h Assertio	on and Reason are cor	rect and Reason is corre	ct explanation of Assertion.
	(b)	If botl	h Assertio	on and Reason are cor	rect but R is not the expl	anation of Assertion.
	(c)	If Ass	ertion is o	correct Reason is wron	ng.	
	(d)	If Ass	ertion is v	vrong Reason is corre	ect.	
1	Asser	tion	: E	Sutan-2-ol is optically a	ctive.	
	Reasc	on tion	: It	s mirror image is non-	superimposable on it.	
2.	Asser	uon	: 1 a	ryl halides.	group facilitates nucleop	onnic substitution reaction in
	Reaso	on	: Т	he intermediate carban	ion is stabilized due to pre	sence of the nitro- group.

Revision Assignment –5

CLASS: 12th

Chapter Name- D and F block elements

Subject: Chemistry Chapter No.- 8

1. Read the passage given below and answer the following questions:

The transition elements have incompletely filled d-subshells in their ground state or in any of their oxidation states. The transition elements occupy position in between s- and p-blocks in groups 3-12 of the Periodic table. Starting from fourth period, transition elements consists of four complete series: Sc to Zn, Y to Cd and La, Hf to Hg and Ac, Rf to Cn. In general, the electronic configuration of outer orbitals of these elements is $(n - 1) d^{1-10} ns^{1-2}$. The electronic configurations of outer orbitals of Zn, Cd, Hg and Cn are represented by the general formula $(n - 1)d^{10} n^2$. All the transition elements have typical metallic properties such as high tensile strength, ductility, malleability. Except mercury, which is liquid at room temperature, other transition elements have typical metallic structures. The transition metals and their compounds also exhibit catalytic property and paramagnetic behaviour. Transition metal also forms alloys. An alloy is a blend of metals prepared by mixing the components. Alloys may be homogeneous solid solutions in which the atoms of one metal are distributed randomly among the atoms of the other

(i) Which of the following characteristics of transition metals is associated with higher catalytic activity?

	(a) High enthalpy of atomisation	(b) Variable oxidation states			
	(c) Paramagnetic behaviour	(d) Colour of hydrated ions			
(ii)	Transition elements form alloys	easily because they have			
	(a) same atomic number	(b) same electronic configuration			
	(c) nearly same atomic size	(d) same oxidation states.			
(iii)	The electronic configuration of t	tantalum (Ta) is			
	(a) $[Xe]4f^{0}5d^{1}6s^{2}$	(b)[Xe) $4f^{14}5d^26s^2$			
	(c) $[Xe]4f^{14}5d^36s^2$	$(d)[Xe]4f^{14}5d^{4}6s^{2}$			
(iv)	Which one of the following outer orbital configurations may exhibit the largest number of				
	oxidation states?				
	(a) $3d^54s^1$	(b) $3d^54s^2$			
	$(c)3d^24s^2$	$(d)3d^{3}4s^{2}$			
(v)	Which one of the following outer orbital configurations may exhibit the smallest number of				
	oxidation states?				
	(a) $3d^54s^1$	(b) $3d^54s^2$			
	(c) $3d^24s^2$	(d) $3d^34s^2$			
Q2	Define the following				
	a) Transition elements	b) Paramagnetic substance			

Q3 Application based question: -

Explain giving reason:

- (a) Transition metals and many of their compounds show paramagnetic behaviour.
- (b) The enthalpies of atomisation of the transition metals are high.
- (C) Describe briefly the following physico-chemical properties of transition metals
 - (i) Metallic character (ii) Complex formation.
- (d) Copper (I) is diamagnetic whereas copper (II) is paramagnetic. Explain.
- (e) The colour of a solution of $K_2Cr_2O_7$ depends on pH of the solution. Transition elements show variable valencies. What is the reason for it and how is this variation different from that shown by the p-Block elements?
- (f) What happens when
- (i) $K_2Cr_2O_7$ reacts with acidified solution of KI
- (ii) SO₂ is passed through an acidic solution of potassium dichromate
- (iii) $K_2Cr_2O_7$ reacts with sodium chloride in the presence of conc. H_2SO_4 .

Q4 Assertion and reason questions:

Choose the correct one from. Following option

- (a) If both Assertion and Reason are correct and Reason is correct explanation of Assertion.
- (b) If both Assertion and Reason are correct but R is not the explanation of Assertion.
- (c) If Assertion is correct Reason is wrong.

(d) If Assertion is wrong Reason is correct.

- **1** Assertion : Zinc does not show characteristic properties of transition metals.
 - **Reason** : In Zn outermost shell is completely filled.
- **2. Assertion** : The highest oxidation state of chromium in its compounds is +6.
 - **Reason** : Chromium atom has only six electrons in ns and (n 1) d-orbitals

(Section-B)

Lab Manual work

Complete the following experiment in practical file

- 1. To determine the strength and molarity of KMnO₄ solution by titration against mohr salt
- 2. To determine the percentage purity of $KMnO_4$ solution by titration against mohr salt
- 3. To determine the strength and molarity of KMnO₄ solution by titration against oxalic acid
- 4. To determine the percentage purity of KMnO₄ solution by titration against oxalic acid

	MRAILER SINCE 19	R.E.D. Group of Schools Summer Holidays Homework SESSION: 2023-24		
Subie	ect:	CLASS – 12 th Biology Text Book: 1	NCFRT BOOK, MTG	
00.070				
1.	Syl	abus Covered upto MAY END		
	0	Chapter No 02 Chapter Name - Sexual Reproduction in Flowering Plants		
	0	Chapter No 04 Chapter Name- Reproductive Health		
	0	Chapter No 05 Chapter Name- Principles of Inheritance and Variation		
2.	List	t of all new concepts taught upto MAY END		
	0	Structure of flower o Male Reproductive o Contrace	ptive devices	
	0	Microsporogenesis system o Mono and	d Dihybrid cross	
	0	Pollination o Female Reproductive o Linkage a	and Recombination	
3	0 For	Double Tertifization system		
5.	0	Section-A-Creative Project/ Working model/ Inquiry based project.		
	0	Section-B-Diagram and Labeling assessment activity.		
	о	Section-C-Experiment based activity.		
	ο	Section-D- Learning and Pre-reading homework.		
4.	Sur	nmative Assessment based Homework:		
-	0 70	Section-E- Chapter-wise Assignments		
5.	100	NCERT Text Book MTG book	net	
	0	Notebook O Resources as p	er activity	
6.	Inst	cruction/Guidelines for Formative Assessment based Homework:		
	0	Section-A-Creative Project/ Working model/ Inquiry based project.		
		<u>Topic</u>	<u>Roll No.</u>	
		Collection and Observation of different types of flower having different types of pollination	1 to 8	
		Showing T.H. Morgan experiment with the help of thermocol sheet or on chart paper to explain Linkage & Recombination.	9 to 16	
		To study the infertility and its causes and treatment	17 to 24	
		To study and Extract the DNA from Banana	25 to 32	

- ✤ Paste all pieces on rectangular large thermocol sheet.
- III. (Roll No. 17 to 24) Topic: To study the infertility and its causes and treatment.
 - <u>Materials Required</u>: chart paper, markers, pencil, eraser, scale etc.
 - <u>Steps to prepare:</u>
 - Find out the different causes of infertility in Human male & female and methods of ART.
 - Write down different factors involved in the process.
 - ✤ Represent all the factors and methods of treatment on a chart paper.

IV. (Roll No. 25 to 32) Topic: To study and Extract the DNA from Banana

- Materials Required: Two clear glasses/cups
 - ✤ Sealable plastic bag
 - Banana
 - ✤ Blunt knife and teaspoon
 - Plate/chopping board
 - ✤ Measuring jug
 - Either a colander/sieve/tea strainer
 - Either a coffee filter/dish cloth/paper towel

• Steps to prepare:

- Step 1: Chop up the banana.
- ✤ Place the banana onto a plate. Use the knife to chop it up.
- Step 2: Put the banana into a bag.
- ✤ Place the banana pieces into a sealable plastic bag.
- Step 3. Squash the banana.
- Close the bag and gently squash the banana until smooth.
- Step 4: Add salt to warm water
- Fill the glass half full with warm water. Add the salt, then stir with a teaspoon until dissolved.
- Step 5: Add washing up liquid
- ✤ Add washing up liquid to the glass and stir.
- Step 6: Pour into the bag.
- Pour into the bag. Close the bag and squash gently for 10 minutes.
- Step 7: Sieve
- Put the sieve on top of the jug. Place the coffee filter in the sieve and pour the contents of the bag into it. Let the liquid drain through. This can take a while!
- Step 8: Pour the drained liquid into a glass.
- Pour the drained liquid into a glass. Place on top of the black card. Make sure you are wearing safety glasses!
- Step 9: Ask an adult to carefully add the alcohol
- Have an adult pour the alcohol down the side into your glass. Watch the bottom of your cup! White strands which look like cotton should appear. This is your banana DNA – the instructions to make a banana!
- ✤ Step 10: Pick out the DNA!
- Write down different factors involved in the process.
- ✤ Represent all the steps on a chart paper.

o <u>Section-B- Diagram and Labeling assessment activity.</u>

- Draw well labelled diagrams of the following:
 - Anatropous ovule
 - Male reproductive system
 - Female reproductive system
 - Mature Human Sperm
 - Menstrual cycle

- Vasactomy & Tubectomy
- Embryo sac
- Ovum
- Sectional view of Seminiferous tubule
- Sectional view of mammary gland

• <u>Section-C-Experiment based activity.</u>

- One activity which can be performed at home with parental supervision.
 - Name of the Activity: Showing Dihybrid cross by using different colour of marbles and calculation of phenotypic ratio of F2generation.
 - > Material Required: Marbles of yellow and green colour having round & wrinkled shape.
 - > **Procedure**: Follow steps of dihybrid cross of Mendal experiment up to F2 generation.
 - > **Observations**: Observe the colour of progeny in F2 generation.
 - > Conclusion: Find out Phenotypic ratio of F2 generation.
- Precautions: Avoid mixing of marbles.

Section-D-Learning and Pre-reading homework.

- Learning Homework: Learn Q. No. 4 to 13 of chapter 5, NCERT BOOK.
 - Learn Q. No. 3 to 7 of chapter 4, NCERT BOOK.
 - Learn Q. No. 7 to 12 of chapter 3, NCERT BOOK.
 - Learn Q. No. 2 to 9 of chapter 2, NCERT BOOK.
- <u>Pre-Reading Homework:</u> Read Page no. 126 to 141 of NCERT BOOK, MTG.
- **Section-E-Revision assignment.**

0

- Black paper/card/black t-shirt/black jumper
- Vodka/surgical spirit/rubbing alcohol (keep in freezer)
- ✤ 4 teaspoons salt
- ✤ 2 teaspoons washing up liquid
- ✤ Warm water
- ✤ chart paper, markers, pencil, eraser, scale.

Revision Assignment-1

Subject: Biology

Ch. No.: 02

Class: XII Ch. Name: Sexual Reproduction in Flowering plant

For re	For recapitulation & solving the assignment the students should refer to their NCERT BOOK, MTG			
		Part-1	L	
		(Case Study Question/Act	ivity based Question)	
Instru	ction: Read the follo	wing passage and answer th	e following questions.	
Q.1.	Case Study- 1			
The po	ollen grains or microsp	pores are the male reproductive	ve bodies of a flower an	nd are contained in the pollen
sac or	microsporangia. Eacl	h pollen grain consists of a	single microscopic ce	ll, possessing two coats: the
exine	and the intine. The exi	ne of a pollen grain is made o	of chemically stable ma	terial. Because of this, pollen
grains	are often very well pro	eserved for thousands of year	s in soil and sediments.	
(i)	One of the most resis	stant biological material mater	rial present in the exine	e of pollen grain is
	(a) pectocellulose	(b) sporopollenin	(c) suberin	(d) cellulose.
(ii)	The exine possesses	one or more thin places know	'n as	
	(a) Raphe	(b) Germ pores	(c) Hilum	(d) Endothecium
(iii)	What is the function	of germ pore?		
	(a) Emergence of rad	lical	(b) Absorption of wa	ater for seed germination
	(c) Initiation of polle	n tube	(d) All of these	
(iv)	What is the key adva	ntage to the plant for having s	such strong pollen grain	n walls?
	(a) It protects the vita	al genetic material in the polle	en grain.	
	(b) It allows pollen to	o serve as a valuable fossil rec	cord for the study of an	cient plants.
	(c) It prevents the pol	llen tube from growing out be	efore the pollen grain re	eaches the stigma of a
	compatible species.			
	(d) It gives weight to	the pollen grain, allowing it	to cling better to the bo	dy surfaces of insect
	pollinators.			
(v)	The number of germ	pores in dicots and monocots	respectively are	
	(a) One and three	(b) Three and two	(c) Two and three	(d) Three and one
		Part-2	2	
	<u>Subject Sp</u>	pecific conceptual definition	s & Application based	l Questions
Q.2.	Define the following	terms:-		
	i) Microsporogenesis	ii) Xenogamy	iii) Tapetum	iv) Autogamy
0.3.	Differentiate the fol	lowing:-		
C	i) Self pollination &	Cross pollination		
	ii) Complete flower &	& Incomplete flower		
	iii) Tapetum & Epide	ermis of anther lobe		
	iv) Microsporogenesi	is & Megasporogensis		
04	Application based of	mestion.		
ч т .	i) Explain the pheno	menon of double fertilization	17	
	i) Draw a labelled d	liagram of a typical anatropol	ıs ovule	
	iii) How do the polle	en grains of vallsineria protect	t themselves?	
	iv) Differentiate bet	ween the two cells enclosed i	n a mature male gamet	onhyte of an angiosperm
			in a mature mate gumet	oping to of an anglosporm.

Q.5. Assertion and reason questions:

i) Assertion: Ovary forms fruit after fertilization.

Reason: Ovary forms parthenocarpic fruit without fertilization.

- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false
- ii) Assertion: Largest cell of embryo sac is central cell.

Reason: It consists of a fused nuclei.

- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false

iii) Assertion: Megaspore mother cell divides meiotically to produce four spores.

Reason: Megaspore mother cells are haploid and megaspore is diploid.

- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false

Q.6. Conceptual and Mental Ability Based Type Questions)

Answer the following questions in one word or a sentence.

- 1. What is meant by monosporic development of female gametophyte?
- 2. Why apple called a false fruit? Which part(s) of the flower forms the fruit?
- 3. How is it possible in oxalis and viola plants to produce assured seed- sets even in the absence of pollinators?
- 4. What is bagging technique?
- 5. What are chasmogamous flowers?

(Section-B)

Lab Manual work

Links from You Tube:

https://youtu.be/qGLo_cUMlHU

Experiment-1 Study of pollen germination.

(Do this work in Practical file)

NOTE: Holiday Homework will not be accepted after the assigned date.

Revision Assignment-2

Clas	ss: XII
Ch.	Name: Human Reproduction

For recapitulation & solving the assignment the students should refer to their NCERT BOOK, MTG Part-1 (Case Study Question/Activity based Question) Instruction: Read the following passage and answer the following questions. Case Study-1 **Q.1**. Oogenesis is the process of formation of ovum in ovaries. It consists of three phases: multiplication, growth and maturation. Oogenesis is controlled by hormones GnRH, LH, FSH. GnRH secreted by the hypothalamus stimulates the interior lobe of pituitary gland to secrete LH and FSH. What is the function of hormone FSH? (i) (a) It inhibits the formation of estrogen. (b) It induces the release of secondary oocyte (c) It stimulates the growth of Graafian follicles. (d) It causes ovulation. Which hormone induces the rupture of the mature Graafian follicle? (ii) (a) Follicle stimulating hormone (b) Gonadotropin releasing hormone (c) Progesterone (d) Luteinising hormone (iii) Which cell division is involved in the formation of secondary oocyte? (a) Mitosis (d) Meiosis II (b) Meiosis (c) Amitosis (iv) Identify the function(s) of LH. (a) (A) and (B) only (b) (B) and (C) only (c) (A), (C) and (D) only (d) (B) only Part-2 Subject Specific conceptual definitions & Application based Questions Q.2. Define the following terms:i) Spermatogenesis ii) Secretory phase iii) Spermiation iv) Vulva

Q.3. Differentiate the following:-

- i) Spermiogenesis & Spermiation
- ii) Spermatogenesis & Oogenesis
- iii) Menstrual phase & Follicular phase
- iv) Tertiary follicle & Graffian follicle

Q.4. Application based question:-

- i) Write the effect of high concentration of LH on a mature Graffian follicle?
- ii) Draw a diagrammatic labelled sketch of a sectional view of human ovary?
- iii) What is amniocentesis? How is it performed?
- iv) What is menstrual cycle? Explain the various stages of menstrual cycle?

Q.5. Assertion and reason questions:

- i) Assertion: The increase in progesterone level expert positive feedback on GnRH.
 - Reason: The rising level of progesterone stimulate production of FSH and LH.
 - (a) Both Assertion and reason are true and reason is correct explanation of assertion
 - (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
 - (c) If assertion is true but reason is false.
 - (d) If both assertion and reason are false
- ii) Assertion: The region inside the seminiferous tubules contain Leydig cell.

Reason: Leydig cells synthesise and secrete androgens.

- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false

iii) Assertion: The uterus is shaped like an inverted pear.

Reason: The inner glandular layer lining the uterine cavity is called as myometrium.

- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false

Q.6. Conceptual and Mental Ability Based Type Questions)

Answer the following questions in one word or a sentence.

- 1. Define spermiogenesis. Where does it occur?
- 2. Define foetal ejection reflex?
- 3. At what stage a primary oocyte is suspended at?
- 4. Name the hormones produced during pregnancy in human females? Mention their source organ?
- 5. Name the stages when oogenesis and spermatogenesis initiate in human female and male

(Section-B)

Lab Manual work

Links from You Tube:

https://youtu.be/_r3kFN6TmOs

Experiment-1 Study of permanent slides of T.S. of Testis & Ovary.

(Do this work in Practical file)

NOTE: Holiday Homework will not be accepted after the assigned date.

Revision Assignment-3

Class: XII Ch. Name: Reproductive Health Subject: Biology Ch. No.:4

For recapitulation & solving the assignment the students should refer to their NCERT BOOK, MTG Part-1 (Case Study Question/Activity based Question) Instruction: Read the following passage and answer the following questions Q.1. Case Study-1 Over population causes number of family problems. Strategies like birth control methods help to control population causes explosion. Natural methods of birth control do not involve medications or devices to prevent pregnancy but rather rely on behavioral practices and/or making observations about menstrual cycle. (i) Which method helps in contraception by temporary absence of sex? (a) Coitus interruptus (b) Withdrawal method (c) Rhythm method (d) Lactational amenorrhea method (ii) Assertion: The effectiveness of coitus interruptus method is limited. Reason: Some sperms may pass into vagina before ejaculation. (a) Both assertion and reason are true and reason is the correct explanation of assertion. (b) Both assertion and reason is the correct explanation of assertion. (c) Assertion is true but reason is false. (d) Both assertion and reason are false. (iii)Why is lactational amenorrhea effective for about 4-5 months after parturition? (a) Ovulation occurs on about the 14th day of menstruation. (b) Ovulation does not occur during intense lactation. (c) This method inhibits mobility of sperms. (d) Both (b) and (c) (iv)Which fact is not the basis of periodic absence method of birth control? (a) Ovum remains alive for about 1-2 days. (b) Ovulation occurs on about 14th day of menstruation. (c) Sperms survive for about 3 days (d) Alternation in uterine Endometrium (v) On which days of menstrual cycle should coitus be avoided to prevent fertilisation? (a) 10-17 (b) 6-13 (c) 1-5 (d) 15-28 Part-2 Subject Specific conceptual definitions & Application based Questions

Q.2. Define the following terms:-

i) RCH ii) Maternal mortality rate iii) Intra uterine transfer iv) ICSI

Q.3. Differentiate the following:-

- i) ZIFT & GIFT
- ii) Maternal mortality rate & Infant mortality rate
- iii) RCH & STD
- iv) ART & Sterlization

Q.4. Application based question:-

- i) Why tubecotomy considered a contraceptive method?
- ii) Mention any four characteristics that an ideal contraceptive should have?
- iii) What is amniocentesis? How is it performed?
- iv) 'Intracytoplasmic Sperm Injection' and 'Gamete Intra-Fallopian Transfer' are two assisted
- reproductive Technologies. How is one different from the other?

Q.5. Assertion and reason questions:

i) Assertion: The shape of uterus is like a inverted pear.

- Reason: The inner glandular layer that lines the uterine cavity is called myometrium.
- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false
- ii) Assertion: Natality increases both population density and population size.

Reason: Natality increases the number of individuals in an area by birth.

- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false
- **iii)** Assertion: Periodic abstinence is a method in which couples avoid from 17 to 28 days of menstrual cycle.
 - Reason: It is a very effective and 100 percent sure method of birth control
 - (a) Both Assertion and reason are true and reason is correct explanation of assertion
 - (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
 - (c) If assertion is true but reason is false.
 - (d) If both assertion and reason are false

Q.6. Conceptual and Mental Ability Based Type Questions)

Answer the following questions in one word or a sentence.

- 1. Define in vitro fertilization?
- 2. Expand IUI? What is it?
- 3. Why are MTPs carried out?
- 4. What is vasectomy?
- 5. Describe the lactational amenorrhea method of birth control?

(Section-B)

Lab Manual work

Links from You Tube:

Experiment-1

(Do this work in Practical file) NOTE: Holiday Homework will not be accepted after the assigned date.

Revision Assignment-4

Subject: Biology

Ch. No.: 05

Class: XII Ch. Name: Principle of inheritance and variation

For recapitulation & solving the assignment the students should refer to their NCERT BOOK, MTG						
Part-1						
		(Case Study Question	Activity based Question)			
Instr	uction: Read the follo	wing passage and answe	er the following question			
0.1.	Case Study- 1		0			
Prash	ant wanted to find the	e genotype of a pea plant	bearing purple coloured flowers	s in his kitchen garden.		
For the	nis, he crossed purple	e flowered plant with wh	nite flowered plant. As a result,	all plants which were		
produ	ced had purple flowe	r only. Upon selfing the	se plants, 75 purple flower plan	ts and 25 white flower		
plants	were produced. Now	, he can determine the ge	enotype of a purple flowered pla	nt by crossing it with a		
white	flowered plant.	, C				
(i) Which of the follow	ing cannot be derived from	m the crosses done by Prashant?			
	(a) Mendel's law of	segregation	(b) Mendel's law of domir	nance		
	(c) Mendel's law of	independent assortment	(d) Both (a) and (c) $(a) = (a) + ($			
(ii) To determine the g	enotype of a purple flo	wered plant, Prashant crossed t	his plant with a white		
	flowered plant, this	cross represents a	-	•		
	(a) Test cross	(b) Dihybrid cross	(c) Reciprocal cross	(d) Trihybrid cross		
(ii	i)In white flowered pl	ant, allele is expressed in	-	-		
	(a) Heterozygous co	ndition only				
	(b) Homozygous con	ndition only				
	(c) F3 generation					
	(d) Both homozygou	is and heterozygous cond	ition.			
(i	v)The character, i.e., p	ourple colour of the flower	s that appeared in the first filial g	generation is called		
	(a) Recessive charac	eter	(b) Dominant character			
	(c) Holandric charac	eter	(d) Lethal character			
(v) Assertion: A geneticist crossed two plants and he obtained 50% purple flowered plants and 50% white						
flowered plants.						
Reason: Purple coloured flower plant might be heterozymgous.						
(a) Both assertion and reason are true and reason is the correct explanation of assertion.						
	(b) Both assertion and reason is the correct explanation of assertion.					
	(c) Assertion is true but reason is false.					
	(d) Both assertion an	nd reason are false.				
<u>Part-2</u>						
Subject Specific conceptual definitions & Application based Questions						
Q.4.	Define the following	terms:-				
	i) Back cross	ii) pleiotropy	iii) law of dominance	iv) linkage		
Q.5.	Differentiate the fo	llowing:-				
	i) Law of independent assortment & law of segregation					
	ii) Test cross & outcross					
	iii) Turner's syndrome & Klinefelter's syndrome.					

iv) point mutation & frameshift mutations.

Q.6. Application based question:-

i) Name the metabolism or enzyme that is impaired in phenylketonuria?

ii) Why haemophilia generally observed in human males? Explain the conditions under which a human female can be haemophilic.

iii) Inheritance pattern of flower colour in garden pea plant and snapdragon differs. Why is this difference observed? Explain showing the crosses upto F2 generation.

iv) Explain sex determination in grasshopper and birds?

Q.7. Assertion and reason questions:

- i) Assertion: Gametes receive only one allele of a gene.
 - Reason: During gamete formation mitosis takes place leads to the formation of haploid cells.
 - (a) Both Assertion and reason are true and reason is correct explanation of assertion
 - (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
 - (c) If assertion is true but reason is false.
 - (d) If both assertion and reason are false
- ii) Assertion: Genes pass from one generation to another generation

Reason: The unit of inheritance are genes.

- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false

iii) Assertion: Behaviour of chromosomes is parallel to genes.

Reason: Genes are located on chromosomes.

- (a) Both Assertion and reason are true and reason is correct explanation of assertion
- (b) Both Assertion and reason are true but reason is not a correct explanation of assertion.
- (c) If assertion is true but reason is false.
- (d) If both assertion and reason are false

Q.8. Conceptual and Mental Ability Based Type Questions)

Answer the following questions in one word or a sentence.

- 1. Which law of inheritance of Mendel is universally acceptable without any exception? State the law.
- 2. AaBb was crossed with aabb. What would be the phenotypic ratio of the progeny? Mention the term used to donate this kind of cross.
- 3. On what basis of skin colour in humans considered polygenic?
- 4. Write the types and location of the genes causing thalassemia in humans.
- 5. Name such a trait each, in humans and drosophila, whose genes are present on X- chromosome.

(Section-B) Lab Manual work

Links from You Tube:

.....

Experiment-1 (Do this work in Practical file)

NOTE: Holiday Homework will not be accepted after the assigned date.

- Collect pictures related to any one of the given topics.
 Posts the Distance of the Chart (Using reality Visition lies I)
- Paste the Pictures on the Chart (Horizontally, Vertically, Diagonally) (Note: There should not be black space between pictures)

o Section-B-Thinking Skill based Task (Crossword/ Word Search/ Match ups)

Comment	Casting	Data Type	String	Variable
Conver	ting one da	ta type to anot	her	
Used to give additional information in the program. This statement is ignored by the compiler.				
Defines the op	s the range of the	of possible valu t can be carrie	ues and d out.	
A name value c	ed memory an be chanរូ	location that s ged while the p	tores a valu program is r	e, this unning.
A sequ	ence of cha	racters		

OR

• Section-C-Application Skill based Task

- Write a Python script that traverses through an input string and prints its characters in different lines- two characters per line.
- 2. What is the output of the following?

x=12

for I in x:

print(I)

- 3. Write a script in Python that displays digit at one's position digit of the integer.
- 4. Write a script in Python to check whether an entered string is palindrome or not?
- 5. What is the output of the following code?

i=9

while True:

if(i+1)%4==0:

break

print(i,end=' ')

i+=1

- 6. Draw a table showing precedence of different operators we use in Python?
- 7. What will be output of the following code?

```
tp1=(2,4,3)
tp3=tp1*2
print(tp3)
```

- 8. Name the function required checking if a string contains only uppercase letters?
- 9. Name some of the functions defined in math module(Atleast five)?
- 10. Write a program to check whether a number entered is prime or not?

• Section-D-Learning and Pre-reading homework.

Learning Homework

Question & Answers, Keywords (From ChNo.1 Ch. Name-Python Revision Tour (Pg. No. 29 to 40)

Question & Answers, Keywords (From ChNo.2 Ch. Name-Python Revision Tour-II(Pg. No. 76 to 90)

Pre reading Homework

Ch No. 3Ch. Name- Working with Functions Pg. No. 91-150

7. <u>Summative Assessment based Homework:</u>

• Section-E-Solve the given Revision Assignments.

	i.	1
S.	4	
N.	5	كلملق
-		<u>a</u>

Revision Assignment -1 (Session: 2023-24)

Class-12 th		Subject: Computer Sci. Ch. No. & Name: Ch-1 & Python Revision Tour					
PART -A							
Q-1	Multi	iple Choice Questions:					
	i.	Which of the following will create a single element tuple?					
		a) (1,)	b) (1)				
		c) ([1])	d) tuple([1])				
	ii.	The operator tells if an element is present in a sequence or not.					
		a) exists	b) in				
		c) into	d) inside				
	iii.	Which value type does input() return?					
		a) Boolean	b) String				
		c) Int	d) Float				
	iv.	Negative index -1 belongs to the of string.					
		a) First character	b) last character				
		c) Second last character	d) Second character				
	v.	How would you write x ^y in Python as an expression?					
		a) x**y	b) x^y				
		c) x^^y	d) None of these				
Q-2	Fill in	n the blanks:					
	i.	A is a word having special meaning and role as specified by programming					
		language.					
	ii.	The statement is an empty statement in Python.					
	iii.	Strings in Python store their individual letters in memory in location.					
	iv.	The explicit conversion of an operand to a specific type is called					
	v.	The statement skips the rest of the loop and jumps over to the statement following the					
		loop.					

Q-3 Very Short Answer Types Questions:

- Is the following statement valid? Why?
 >>> "a"==a
- ii. What is None literal in Python?
- iii. If the = = operator returns True for an expression a= = b, does it indicate that both variables a and b refer to the same memory location?
- iv. What are the two ways to add something to a list? How they are different?
- v. What is entry controlled loop? Which loop is entry controlled loop in Python?

PART -B

Q-4 Short Answer Types Questions:

- i. An Immutable data type is one that cannot change after being created. Give three reasons to use immutable data
- ii. Explain the use of pass statement. Illustrate it with an example.
- iii. Predict the output of the following code:-

Numbers=[9,18,27,36]

for num in Numbers:

for N in range(1,num%8):

print(N,"#",end =" ")

print()

- iv. Explain concept of random() and randint() function with suitable example?
- v. Write program in Python to check whether a number entered is prime or not?

PART -C

Q-5 Case Study Based/ Long Answer Type Questions:

Write a Python code to allow the user to enter a two digit number and generate a six digit random number and check whether the entered number and number generated by system are same or not, if yes then display "you are winner" on screen otherwise display "better luck next time" on screen.

Revision Assignment -2 (Session: 2023-24)

Class- 12th Subject: Computer Sci. Ch. No. & Name: Ch-2 & Python Revision Tour-II PART -A Q-1 **Multiple Choice Questions:** i. The numbered position of a letter in a string is called_____ a) Position b) Integer Position d) Location c) index The keys of a dictionary must be of _____ types. ii. b) Mutable c) Immutable d) Any of these a) Integer Which of the following functions will return a list containing all words of a string? iii. a) find() b) index() c) partition() d)split() What is the output when we execute list("hello")? iv. a) ['h', 'e', 'l', 'l', 'o'] b) ['hello'] c) ['llo'] d)['olleh'] Which of the below given functions cannot be used with nested tuples? v. a) index() b) count() c) max() d) sum() Q-2 Fill in the blanks: The _____ function returns all the key: value pairs as (key, value) sequences. i. ii. Creating a tuple from a set of values is called _____. iii. Dictionaries are ______ set of elements. iv. Value is assigned to keys, if no value is specified with from keys() method. v. A copy of the dictionary where only the copy of the keys is created for the new dictionary, is called_____copy. Q-3 **Very Short Answer Types Questions:** i. Can non graphic characters be used and processed in Python? How? Give answer to support your answer. ii. Explain concept of bubble sort with example? iii. What type of objects can be used as keys in dictionaries? iv. How is del D and del D[<key>] different from one another if D is a dictionary? v. Can we use a dictionary within another dictionary? If Yes then how, if no then why. PART-B Q-4 **Short Answer Types Questions:** i. Write a short Python code segment that adds up the lengths of all the words in a list and then prints the average (mean) length. ii. Write a program to sort a dictionary's keys using bubble sort and produce the sorted keys as a list. iii. Write a program in Python to display Fibonacci series upto 10 elements. iv. Write short note on user defined and pre-defined functions. v. Write a program to check whether entered string is palindrome or not.

PART-C

Q-5 **Case Study Based/ Long Answer Type Questions:**

Write a program in Python that rotates the elements of a list so that the element at the first index moves to the second index, the element at the second index moves to the third index, etc., and the element in the last index moves to the first index.